

Ice-phase cloud microphysics scheme implemented in open-source Julia library

Rowan Orlijan-Rhyne, Anna Jaruga, Sajjad Azimi, Anastasia Popova, Tapio Schneider

Particle regimes with small D_m

F_rim

Particle regimes with medium D_m

F rim

Particle regimes with large D_m

F rim

dense nonspherical ice (1); graupel (2), partially rimed ic

200 -

1) Introduction

- Climate Modeling Alliance (CliMA) in search of 2moment ice parameterization for data-informed, open-source Julia global circulation model (GCM)
- Predicted particle properties (P3) scheme is a compelling candidate:
 - single ice category
 - mixed-phase particles

1) Physics-based scheme: P3 models the accumulation of rime on ice particles as pictured, accounting for varying geometry

2) Ice particle properties: a piecewise particle mass-dimension relation is an example of how the P3 scheme captures the evolution of properties across different regimes

Acknowledgements

J. A. Milbrandt. Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests. Journal of the Atmospheric Sciences 72, 287-311 (2015) J.-P. Chen, T.-W. Hsieh, C.-Y. Lin and C.-K. Yu. Accurate parameterization of precipitation particles' fall speeds for bulk cloud microphysics schemes. Atmospheric Research 293 (2022). M. C. al. Parameterization of the Bulk Liquid Fraction on Mixed-Phase Particles in the Predicted Particle Properties (P3) Scheme: Description and Idealized Simulations. Journal of the

Figure 1 courtesy of Praz et al. 2017 (https://doi.org/10.5194/amt-10-1335-2017)
Thank you to Swarthmore College and to Caltech for funding this research, and to Swarthmore College for funding this poster presentation.

2) Methods

- Open-source software development Extensive documentation, testing
- Goal of GPU-compatibility/efficiency
- Uses RootSolvers.jl and approximation of gamma functions to solve systems and integrate

3) Results

- Threshold solvers and integration are stable for our use cases
- Sedimentation and melting demonstrated in 1D kinematic model
- Scheme reproduces property and velocity regimes from literature

4) Future work

- Implement rest of process rates
- Implement gamma function approximation
- Test in 1D, 2D, large-eddy simulation (LES), and GCM models

3) Particle regimes (left); and mass-weighted terminal velocity (m/s) as functions of rime mass fraction and rime density (top) or liquid fraction (bottom). Contours show the mass-weighted mean particle size (mm). Ice mass content and number concentration values used to generate small, medium, and large mean particle sizes are about 0.0008, 0.5, 2 kgm⁻³ and 10⁶ m⁻³, respectively. We see relatively smooth modeling of particles across regimes.